BACKGROUND: Measles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012.
OBJECTIVES: To assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years.
SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019).
SELECTION CRITERIA: We included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age.
DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE.
MAIN RESULTS: We included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence). Vaccine effectiveness against rubella, using a vaccine with the BRD2 strain which is only used in China, is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence). Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections. AUTHORS' CONCLUSIONS: Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.
Although a measurable number of epidemiological studies have been conducted to clarify the associations between mercury exposure during embryo or early infancy and later incidences of autism spectrum disorders (ASD) or attention-deficit hyperactivity disorder (ADHD), the conclusion still remains unclear. Meta-analysis was conducted for two major exposure sources; i.e., thimerosal vaccines that contain ethylmercury (clinical exposure), and environmental sources, using relevant literature published before April 2014. While thimerosal exposures did not show any material associations with an increased risk of ASD or ADHD (the summary odds ratio (OR) 0.99, 95% confidence interval (CI) 0.80-1.24 for ASD; OR 0.91, 95% CI 0.70-1.13 for ADHD/ADD), significant associations were observed for environmental exposures in both ASD (OR 1.66, 95% CI 1.14-2.17) and ADHD (OR 1.60, 95% CI 1.10-2.33). The summary ORs were similar after excluding studies not adjusted for confounders. Moderate adverse effects were observed only between environmental inorganic or organic mercury exposures and ASD/ADHD. However, these results should be interpreted with caution since the number of epidemiological studies on this issue was limited and still at an early stage. Further studies focused on subjects with genetic vulnerabilities of developmental disorders are warranted for better understanding of the effects of such environmental exposures.
There has been enormous debate regarding the possibility of a link between childhood vaccinations and the subsequent development of autism. This has in recent times become a major public health issue with vaccine preventable diseases increasing in the community due to the fear of a 'link' between vaccinations and autism. We performed a meta-analysis to summarise available evidence from case-control and cohort studies on this topic (MEDLINE, PubMed, EMBASE, Google Scholar up to April, 2014). Eligible studies assessed the relationship between vaccine administration and the subsequent development of autism or autism spectrum disorders (ASD). Two reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus with another author. Five cohort studies involving 1,256,407 children, and five case-control studies involving 9,920 children were included in this analysis. The cohort data revealed no relationship between vaccination and autism (OR: 0.99; 95% CI: 0.92 to 1.06) or ASD (OR: 0.91; 95% CI: 0.68 to 1.20), nor was there a relationship between autism and MMR (OR: 0.84; 95% CI: 0.70 to 1.01), or thimerosal (OR: 1.00; 95% CI: 0.77 to 1.31), or mercury (Hg) (OR: 1.00; 95% CI: 0.93 to 1.07). Similarly the case-control data found no evidence for increased risk of developing autism or ASD following MMR, Hg, or thimerosal exposure when grouped by condition (OR: 0.90, 95% CI: 0.83 to 0.98; p=0.02) or grouped by exposure type (OR: 0.85, 95% CI: 0.76 to 0.95; p=0.01). Findings of this meta-analysis suggest that vaccinations are not associated with the development of autism or autism spectrum disorder. Furthermore, the components of the vaccines (thimerosal or mercury) or multiple vaccines (MMR) are not associated with the development of autism or autism spectrum disorder.
PURPOSE: The authors of the study sought, through a meta-analysis of primary studies, to same for those who receive a measles, mumps, and rubella (MMR) vaccination and those who do not?” BACKGROUND: Despite evidence from numerous sources failing to demonstrate consistent evidence of ASD diagnoses as a consequence of receiving MMR vaccinations, parents/guardians sometimes forego vaccinating their children. METHODS: Three researchers searched for and obtained relevant studies, and two researchers independently applied a standardized data extraction form to the included studies. RESULTS: Seven independent effect sizes were calculated, yielding a pooled random-effects OR* = 0.25 (95% CI, LL = 0.09, UL = 0.76) (*denotes random-effects estimate). Under the fixedeffect model, the OR = 0.33 (95% CI, LL = 0.25, UL = 0.45). CONCLUSIONS: The odds of ASD diagnoses attributable to receiving or not receiving an MMR vaccination are not indistinguishable within clinical limits of indifference. Even so, the odds of ASD diagnoses are substantially smaller for those receiving an MMR vaccination than for those who do not.
OBJECTIVE: The issue of thimerosal-containing vaccines as a possible cause of autistic spectrum disorders (ASD) and neurodevelopmental disorders (NDDs) has been a controversial topic since 1999. Although most practitioners are familiar with the controversy, many are not familiar with the type or quality of evidence in published articles that have addressed this issue. To assess the quality of evidence assessing a potential association between thimerosal-containing vaccines and autism and evaluate whether that evidence suggests accepting or rejecting the hypothesis, we systematically reviewed published articles that report original data pertinent to the potential association between thimerosal-containing vaccines and ASD/NDDs.
METHODS: Articles for analysis were identified in the National Library of Medicine's Medline database using a PubMed search of the English-language literature for articles published between 1966 and 2004, using keywords thimerosal, thiomersal, mercury, methylmercury, or ethylmercury alone and combined with keywords autistic disorder, autistic spectrum disorder, and neurodevelopment. In addition, we used the "related links" option in PubMed and reviewed the reference sections in the identified articles. All original articles that evaluated an association between thimerosal-containing vaccines and ASD/NDDs or pharmacokinetics of ethylmercury in vaccines were included.
RESULTS: Twelve publications that met the selection criteria were identified by the literature search: 10 epidemiologic studies and 2 pharmacokinetic studies of ethylmercury. The design and quality of the studies showed significant variation. The preponderance of epidemiologic evidence does not support an association between thimerosal-containing vaccines and ASD. Epidemiologic studies that support an association are of poor quality and cannot be interpreted. Pharmacokinetic studies suggest that the half-life of ethylmercury is significantly shorter when compared with methylmercury.
CONCLUSIONS: Studies do not demonstrate a link between thimerosal-containing vaccines and ASD, and the pharmacokinetics of ethylmercury make such an association less likely. Epidemiologic studies that support a link demonstrated significant design flaws that invalidate their conclusions. Evidence does not support a change in the standard of practice with regard to administration of thimerosal-containing vaccines in areas of the world where they are used.
Measles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012.
OBJECTIVES:
To assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years.
SEARCH METHODS:
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019).
SELECTION CRITERIA:
We included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age.
DATA COLLECTION AND ANALYSIS:
Two review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE.
MAIN RESULTS:
We included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence). Vaccine effectiveness against rubella, using a vaccine with the BRD2 strain which is only used in China, is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence). Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections.
AUTHORS' CONCLUSIONS:
Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.